
Unpaired Learning for High Dynamic Range Image Tone Mapping

Yael Vinker Inbar Huberman-Spiegelglas Raanan Fattal
{yael.vinker, inbar.huberman1, raanan.fattal}@mail.huji.ac.il

School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

Abstract

High dynamic range (HDR) photography is becoming
increasingly popular and available by DSLR and mobile-
phone cameras. While deep neural networks (DNN) have
greatly impacted other domains of image manipulation,
their use for HDR tone-mapping is limited due to the lack of
a definite notion of ground-truth solution, which is needed
for producing training data.

In this paper we describe a new tone-mapping approach
guided by the distinct goal of producing low dynamic range
(LDR) renditions that best reproduce the visual character-
istics of native LDR images. This goal enables the use of
an unpaired adversarial training based on unrelated sets of
HDR and LDR images, both of which are widely available
and easy to acquire.

In order to achieve an effective training under this mini-
mal requirements, we introduce the following new steps and
components: (i) a range-normalizing pre-process which es-
timates and applies a different level of curve-based com-
pression, (ii) a loss that preserves the input content while
allowing the network to achieve its goal, and (iii) the use of
a more concise discriminator network, designed to promote
the reproduction of low-level attributes native LDR possess.

Evaluation of the resulting network demonstrates its
ability to produce photo-realistic artifact-free tone-mapped
images, and state-of-the-art performance on different image
fidelity indices and visual distances.

1. Introduction
High dynamic range (HDR) photography gained a con-

siderable popularity in the last decades among both profes-
sional and non-professional photographers. HDR capabili-
ties are available in many DSLR cameras as well as in main-
stream mobile smartphones, capable of providing 10- and
12-bits of color depth. Printing or displaying these images
on conventional low dynamic range (LDR) devices require
a tone-mapping step for reducing their dynamic range. The
latter revealed itself as a non-trivial task and drew a consid-

Figure 1. Tone-mapped HDR images produced by our method.
The four exposures on the left of each image portray the very high
dynamic range in the original scenes.

erable research effort.
Unlike many image processing and restoration tasks,

there is no ground-truth “solution” for tone-mapping HDR
images, and the different methods developed over the years
aim for different goals. Early approaches use global tone-
reproduction curves (TRC) that make a better use of the out-
put dynamic range than linear bracketing [5, 24, 47]. These
curves avoid over- and under-exposed pixels, but their con-
tractive nature leads to a severe reduction in local contrasts.

Consequently, more modern approaches focus their goal
on preserving, or enhancing, the local contrasts using detail
separation and enhancement techniques [6, 8, 9, 33, 35, 39,
48]. These methods produce highly-detailed images, but
applying high levels of compression remains a challenge in
terms of avoiding edge-related artifacts or achieving bal-
anced levels of contrast and an overall photo-realistic ap-
pearance.

Deep neural networks (DNNs) have greatly impacted
various image processing tasks, such as super resolu-
tion [20], and deblurring [43], by using large training
sets containing ground-truth examples. In the absence of
ground-truth data, the prevalent approach in HDR tone-
mapping is using existing tone-mapping operators (TMOs)
to produce a panel of image labels, and narrowing it down
using an image quality index to obtain the final training ex-
amples [34, 38].



The trained network is expected to reproduce the best
available result on each image, but not surpass the perfor-
mance of its underlining TMO algorithms. Moreover, the
quality indices used reward for fulfilling a small number of
regularities and hence they bias the training towards overfit-
ting these attributes. Some approaches incorporate manual
supervision, but they still rely on the indices in their final
selection [55], or make a subjective decision by picking a
single annotator [30].

In this paper we describe a new DNN-based TMO which
is trained to produce images that bear the visual character-
istics found in native LDR images. By formulating this dis-
tinct goal as an adversarial training, we replace the need
for obtaining paired training examples with the plenitude of
available high-quality LDR images.

Unsupervised adversarial training is a rather delicate
process, prone to various instabilities. In order to achieve
an effective and successful training, our method uses the
following several new steps and components: (i) Before
feeding the input HDR image to the network, we map its
luminance through a range compression curve that reduces
its variance and fixes its range. In order to train and apply
our method on images from arbitrary sources, we use an
adaptive compression level which we estimate on the basis
of each input image.

Moreover, (ii) we incorporate a structure-preservation
loss that penalizes for changes beyond local adjustments in
brightness and contrast. This term ensures the input image
content is preserved and no mode-collapsing occurs.

Finally, (iii) we describe the use of an ensemble of
relatively shallow discriminator networks in order to bet-
ter match the low-level attributes of native LDR images,
and suppress the edge-related artifacts that plague existing
TMOs. We demonstrate our method’s ability to efficiently
produce naturally-looking and artifact-free LDR renditions
of highly challenging HDR scenes. A quantitative evalua-
tion over benchmark HDR images reveals its superior per-
formance over established image quality metrics and visual
distances.

2. Related Work
We briefly review here the different tone-mapping ap-

proaches developed over the years, with an emphasis on re-
cent DNN-based methods.

Tone-Mapping Algorithms. Tone mapping algorithms
are typically divided into global and local operators. Global
operators map pixels based on their tone and apply the
same curve across the image. Notable examples use lin-
ear scaling [52], non-linear tone-curve [47] and logarithmic
tone-curve [21, 5]. The class of S-shaped curves is associ-
ated with responses in the human visual system (HVS) [31]
and is used in [36, 41]. Computational efficiency and lack
of over- and under-exposed pixels are the key advantages

of global operators. However, their non-local reasoning
leads to a sub-optimal local treatment characterized by a
loss of contrast. Local operators address this shortcoming
by adapting their operation based on the local content of
the image. Some works [23, 35, 39] derive their operation
from the local adaptation mechanism of the HVS. However,
the use of spatially-invariant filtering to analyze the image
leads to unwanted halo effects around edges. To minimize
these effects, different types of edge-aware filters were sug-
gested, such as the anisotropic diffusion [48], robust av-
eraging [4], bilateral filter [6], weighted least-squares [8],
local-Laplacian pyramid [33], and a multiscale decomposi-
tion [12]. Another recent work by Liang et al. [25] uses a l0
and l1 sparsity to decompose image details. An additional
approach tackles the problem by operating at the fine scale
of image gradients [9, 44], and over a low-passed measure
of contrast [28]. This research effort led to a significant
improvement in the ability to tone-map HDR images while
preserving their local contrasts and minimizing edge-related
artifacts. Nevertheless, as noted above, high compression
levels may still result in artifacts or compromised realism
due to contrast imbalances.

DNN-based Tone-Mapping. A number of approaches
were suggested for utilizing DNNs for HDR tone-mapping,
despite the lack of ground-truth training data. Hou et
al. [17] train a network to reproduce the input HDR im-
age from its log-transformed luminance map, using a VGG-
perceptual loss [20]. This method operates under the as-
sumption that the compressive effect of the logarithm will
persist under this norm and given the limited network ca-
pacity used. Their network must be trained specifically for
each input image. Gharbi et al. [11] use a network archi-
tecture inspired by the bilateral grid to perform various im-
age enhancement operations given input and output exam-
ple pairs. The emphasis of this approach is on reproducing
the enhancements in real-time.

Several recent methods [3, 30, 32, 34, 38, 55] train their
tone-mapping network using conditional-GAN [18, 50], to
obtain a more abstract metric of matching distributions.
This conditional framework, however, requires pairs of in-
put HDR and a corresponding tone-mapped LDR. These
methods differ in the way they obtain their paired data and
the additional similarity losses they use. Patel et al. [34],
Rana et al. [38] and Cao et al. [3] construct their training
pairs by applying a list of tone-mapping algorithms over
each example HDR image and choosing the result with
the highest tone mapped quality index (TMQI) [53] as its
ground-truth label. Panetta et al. [32] train over a super-
vised low-light images dataset. These methods aid the con-
vergence of their adversarial training using an additional re-
construction loss, Rana et al. and Cao et al. use the VGG-
perception loss, Patel et al. use an L1 loss, and Panetta et
al. use a combination of this loss with a gradient profile loss
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Figure 2. Tone-Mapping Pipeline. Given an input HDR image, we estimate the level of compression needed for mapping its luminance Y
into a fixed-range map, Yc. The latter is fed to the tone mapping network N as well as used for defining the structure-preservation loss.
The network is also trained to minimize an adversarial loss with respect to native LDR images. The final output image is produced from
the resulting luma, N (Yc), and the chromaticity of the input image. We mark in blue and green the components that participate in the
training of the network N and D respectively.

for better considering edge information. Zhang et al. [55]
incorporate a manual supervision by providing three pho-
tographers with a tone-mapping toolbox which they can use
to obtain the most compelling result for each training im-
age. The image with the highest TMQI score is then used
as the training label. Rico et al. [30] use the MIT-Adobe
5K dataset [2] which was also produced by multiple (five)
photographers that were allowed to apply different retouch-
ing operations to each training image. Rico et al. ended up
using the tone-mapped results of only one of the experts as
the training label, and they also employ a VGG-based re-
construction loss.

By contrast to these methods, we alleviate the need for
paired training examples by training our network to repro-
duce the visual attributes of native LDR images.

Let us finally mention the line of work on low-light im-
age enhancement methods. While these methods are not
designed to cope with HDR images, they are also expected
to manipulate (increase) the brightness of images. As these
manipulations apply considerably weaker changes to the
input image than HDR TMOs, global curves-based ap-
proaches are sufficient. Indeed, Guo and Li et al. [14] pre-
dict an image-specific curve mapping using deep learning.
Wang et al. [49] use retouched images to train a network to
deal with underexposed images, and Jiang et al. [19] train
an unsupervised GAN for this purpose. Unlike our method,
this work does not take any particular measure to allow it to
apply significant levels of dynamic range compression.

3. Method
We begin with a brief overview of our new tone-mapping

pipeline, which is summarized in Figure 2, and proceed
with a detailed description of each of its steps.

Similarly to other TMOs [9, 41, 48], we perform the

tone-mapping over the luminance channel Y of the input
HDR in YUV color-space.

We rely on the power of adversarial training to match
the visual appearance of native LDR images. This type
of training is however a delicate process, prone to various
instabilities. To ensure stable training, at the first step of
our pipeline, we bring the input luminance Y into a fixed
range by mapping it through a TRC that applies the proper
amount of compression. This amount is estimated from the
discrepancy between Y ’s histogram and a canonical LDR
luminance distribution.

The resulting image is then fed into the tone mapping
network, N , which is trained to reproduce the visual at-
tributes of native LDRs and remove the biases created by
the TRC applied. This is achieved by an adversarial train-
ing with respect to a dataset of native LDR images. We
augment this training process with a loss that preserves the
structural integrity of the input image by restricting the ac-
tion of N to local changes in brightness and contrast. This
loss also ensures no mode-collapsing occurs.

Finally, the output color image is recovered by the pro-
cedure used in [41, 48, 9].

Adaptive Curve-Based Compression. The luminance
range of different HDR images can differ by orders of mag-
nitude, which brings the need for applying different lev-
els of compression. This variability in the input appears to
challenge N and undermine the convergence of its training.
Consequently, as a pre-process step, we map the input lu-
minances Y to a fixed range using a global curve mapping.
The mapping ranges from a linear transformation to a se-
vere log-like curve, depending on the level of compression
required by the input Y . This family of TRCs is given by

Yc(x) = log

(
λ

Y (x)

max(Y )
+ ε

)
/ log(λ+ ε), (1)
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Figure 3. Operation of the Tone-Mapping Network. The figure shows an input HDR, a color rendition of Yc before being inputted to the
network, and the action of N over Yc. The latter reproduces a significant amount of contrasts which are missing in Yc. The figure also
compares the results obtained by two different discriminator networks. The deep DCGAN architecture leads to spurious brightened and
darkened regions in the image, as indicated by the red frame. The use of an ensemble of shallower discriminator networks achieves a more
consistent tone-mapping.

where max(Y ) refers to the maximal value across the im-
age pixels x, the parameter λ sets the applied level of com-
pression, and ε = 0.05. The resulting luminance values are
restricted to [0, 1] regardless of λ.

Logarithm curves are often used for tone-reproduction
given their similarity to the compressive response to light
that takes place in the human visual system, a.k.a. Weber-
Fechner law [5]. We note however that unlike existing TRC-
based methods we use an adaptive compression level, where
different values of λ are used on different images. In Sec-
tion 3.1 below we describe the way we determine this pa-
rameter based on the histogram of Y .

Natural Appearance. Global TRCs, as the ones applied
in Eq. 1, are notorious for their inability to produce suffi-
cient levels of local contrasts. To avoid this shortcoming
as well as the question of what amount of contrasts should
appear in the tone-mapped rendition, we adopt the goal of
producing tone-mapped images that best resemble LDR im-
ages capturing native LDR scenes.

We leverage the remarkable ability of adversarial train-
ing to reproduce a distribution given example images. More
specifically, we train a discriminator network D to distin-
guish between N (Yc) and a set of high-fidelity native LDR
images. By training N to fool D, its output acquires the de-
sired appearance. The significant effect of the resulting N
is demonstrated in Figure 3.

This unpaired training scheme alleviates the need to col-
lect or produce example tone-mapped images. As noted ear-
lier, unlike [34, 38] who rely on existing tone mapping algo-
rithms, our training allows us to surpass their performance.
Being unsupervised, our training spares the manual effort
assumed in [30, 55], as well as scores better on objective
image fidelity measures.

The architecture of the discriminator network plays a
central role in the success of this approach. The multi-
layered DCGAN architecture prototype [37] has the ability
to correlate between features at multiple scales and discrim-
inate based on high-level semantic content. Consequently,
this architecture is often used for training adversarial gen-

erative networks. We, however, do not train N to conceive
new images from scratch, but specialize on removing biases
in Yc with respect to regular LDR images.

Since these differences relate to local contrasts and edge-
related effects, we set the focus of D to this level of image
modelling by limiting its depth to two convolutional layers.
In order to identify discrepancies at multiple spatial scales,
we follow the approach in [50], and train an ensemble of
discriminator networks, each one applied at a different im-
age resolution, using the following loss

LD =
∑

k∈{0,1,2}

(
EYL∼LDR

[
Dk(↓k YL)− 1

]2
+EY∼HDR

[
Dk

(
↓k N (Yc)

)]2)
,

(2)

where YL denotes the luminance channel of the LDR train-
ing images, and Yc is the compressed luminance computed
from Y using Eq. 1. The ↓k denotes a bicubic ×2k im-
age downscaling operator, and Dk are the discriminator net-
works applied at the corresponding image scales. These
networks have an identical architecture that we describe in
Section 3.2 along with the architecture of N . Finally, we
use Dk to improve the ability of N to match the natural
appearance of LDR images by training it to minimize

Lnatural =
∑

k∈{0,1,2}

EY∼HDR

[
Dk

(
↓k N (Yc)

)
−1

]2
.

(3)
Note that both LD and Lnatural correspond to a least-

squares GAN training losses [29]. Figure 2 summarizes the
computational graph related to these adversarial losses.

Finally, Figure 3 shows the stability related artifacts pro-
duced by the use of a potent deep DCGAN-styled discrim-
inator compared to the more consistent results obtained by
our ensemble of shallower networks.

Structure Preservation. Mapping the luminance dy-
namic range into a narrower range inevitably changes the
brightness of objects. This process can take place without
changing the shape of the objects, in terms of the location



Figure 4. U-Net architecture that we use in our tone-mapping net-
work N . The skip connections at each layer pass the activations
as well as their square-root as indicated by the gray boxes.

and orientation of their edges. However, the adversarial
training in Eq. 3 does not require N (Yc) to bear any sim-
ilarity to the input Y , or Yc. To avoid this pitfall as well
as any mode-collapsing during training, we promote the co-
occurrence of brightness-normalized variations in the input
Yc and the output N (Yc) images. We derive this measure
based on the Pearson correlation inside small image patches
of two images I and J , by

ρ(I, J) =
1

np

∑
pI ,pJ

cov(pI , pJ)

σ(pI)σ(pJ)
, (4)

where pI and pJ are all the 5-by-5 pixel patches in I and J
respectively. The covariance, cov, and standard deviation,
σ, are also computed inside these patches. This measure is
normalized by the total number of patches used, np.

We use this measure to preserve the content and struc-
tural integrity of the input at multiple spatial scales by min-
imizing

Lstruct =
∑

k∈{0,1,2}

ρ(↓k Yc, ↓k N (Yc)), (5)

which we use in combination with the adversarial loss in
Eq. 3 to train N .

We finally note that the structural similarity index
(SSIM) [51] also analyzes the images in the basis of its
patches. However, it is not invariant to changes in the patch
brightness and contrast. Hence, this index is irrelevant for
our purpose as N (Yc) is expected to undergo major changes
in both brightness and contrast.

Color Reproduction. At inference time we recover an
output color image using the formula used in [9, 41, 48].
Specifically, each RGB color channel Cin of the input HDR
image is mapped independently to produce the correspond-
ing output channel by, Cout = (Cin/Y )sN (Yc). We use
the default color saturation parameter s = 0.5.

3.1. Compression Level Estimation

The TRC we use in Eq. 1 allows us to apply different
levels of compression, depending on the amount needed for

each image. We explain here the way we determine this
level.

When collecting training images from the wild, or apply-
ing our TMO over images from arbitrary sources, the meta-
data related to the scale of their luminance values may not
be available. Hence, determining λ based on the maximal
Y value can be unreliable. The option of using the dynamic
range, computed by the ratio between the largest and small-
est input luminances, may be unstable as the noise level reg-
ulating this estimate is unavailable in such circumstances.

To avoid these indeterminacies and train, and apply, our
method over arbitrary images, we derive the following esti-
mate for λ. Specifically, since λ controls the TRC in Eq. 1,
we search for the value that brings Yc closest to a canoni-
cal LDR image behaviour. As the luminance distribution of
HDR images is considerably richer than the one of LDR im-
ages, we use these distributions as the descriptors for mea-
suring this proximity.

Formally, we search for the λ that minimizes the follow-
ing cross-entropy

min
λ

−
∑
l

Hl(Yc) log
(
Hl(LDR)

)
, (6)

where the histogram of Yc, denoted by H(Yc), is a func-
tion of λ, and H(LDR) denotes the histogram of na-
tive LDR images. The latter was computed by averaging
the histogram of 900 high-quality images from the DIV2k
dataset [1]. We used 20 bins indexed by l. Finally, we solve
the optimization in Eq. 6 using a stochastic search [45].

Finally, in Section 4.3 we report an ablation study
demonstrating the contribution of this estimate compared to
using the raw luminance values in the images we collected
for training and testing our method.

3.2. Implementation Details

Tone-mapping Network Architecture. The network N
consists of a U-Net architecture [40] with four levels, each
containing two sets of 3-by-3 convolution, ReLU, and max-
pooling. The number of filters is doubled at every level,
starting with 32 filters. We use ×2 pooling factor and a
convolution-transpose for unpooling. At the output layer,
the ReLU operator is replaced by a sigmoid. This architec-
ture is depicted in Figure 4.

The combination of linear layers (convolution) and
ReLU operators span a space of piecewise affine transfor-
mations. In order to express a smoother luminance map-
ping, we concatenate the activations passing through the
skip connections with their square-root, as indicated in Fig-
ure 4. This step doubles the activations dimension, but
the convolution that follows reduces this dimension. As
shown in the ablation study in Section 4.3, these compres-
sive pointwise transformations improve the photo-realism
of our tone-mapped images.



Discriminator Architecture. We use three separate dis-
criminators which do not share their weights. The networks
have an identical architecture consisting of four layers. The
first two are 4-by-4 convolution layers, with 16 and 32 filters
respectively, and use LeakyReLU activations. Both levels
have ×2 strided pooling. The third layer uses an unstrided
1-by-1 convolution, followed by an output fully-connected
layer with a sigmoid activation.

Datasets. We train the network on HDR images taken
from the HDR+ dataset [15], which contains indoor and out-
door scenes at different lighting conditions. We use 1000
images from this dataset for training and another 1000 im-
ages for testing. Each image is cropped and rescaled to pro-
vide two 256-by-256 images. The native LDR images, used
for the adversarial loss in Eq. 2, were taken from the DIV2k
dataset [1], which contains 1000 high-quality images. We
randomly split this dataset into two halves for training and
testing. Here again, we augment each set by cropping every
image into two, and rescaling them to 256-by-256 pixels.

Training Details. We implemented our model using
the Pytorch framework and trained it on a single GeForce
GTX1080Ti GPU using an Adam optimizer with a learn-
ing rate of 10−4 for N and ×1.5 this rate for D. We pre-
trained D to discriminate between Yc and LDR images for
50 epochs, and then trained both networks over 300 epochs
with a learning-rate decay factor of half every 50 epochs.
The pre-training stage is meant to stabilize the GAN train-
ing. The tone-mapping network N consists of about 4.5M
parameters, and the discriminators a total of 31k parame-
ters. Training these networks took approximately 3 and a
half hours. Running Times. It takes 0.5 seconds for our
trained tone-mapping operator to process a 1333-by-2000
pixels image using a GPU.

4. Results
We report the quantitative and qualitative evaluation of

our tone-mapping network next to the state-of-the-art algo-
rithms of Farbman et al. [8], Ferradans et al. [10], Gu et
al. [12], Mai et al. [27], Shan et al. [42], Shibata et al. [44],
Paris et al. [33], Liang et al. [25], Khan et al. [22] and
Zhang et al. [56]. The default parameters published by the
authors were used for testing these methods.

We also compare to DNN-based methods of Zhang et
al. [55], Rana et al. [38], Panetta et al. [32] and Cao et
al. [3], by running our method on the same sets of test im-
ages these methods used in their evaluation.

4.1. Quantitative Evaluation

In this comparison we used the tone-mapped image qual-
ity index (TMQI) [53] and the blind TMQI (BTMQI) [13],
which are commonly used for assessing TMOs. These in-
dices are evaluated over 105 benchmark HDR images from
the HDR Photographic Survey dataset [7]. In cases where

TMO TMQI BTMQI
Ferradans et al. [10] 0.836 4.563
Mai et al. [27] 0.856 3.958
Shibata et al. [44] 0.87 3.578
Gu et al. [12] 0.871 3.878
Shan et al. [42] 0.874 3.625
Zhang et al. [56]* 0.88 3.76
Rana et al. [38]* 0.88 –
Farbman et al. [8] 0.886 3.602
Liang et al. [25] 0.887 3.691
Khan et al. [22]* 0.889 –
Ma et al. [26] 0.895 3.868
Cao et al. [3]* 0.9 –
Paris et al. [33] 0.906 2.988
Ours 0.919 2.89
Zhang et al. [55]** 0.874 3.519
Ours* 0.902 3.24
Panetta et al. [32]*** 0.873 3.44
Ours* 0.883 3.041

Table 1. Mean TMQI scores (higher is better) and BTMQI (lower
is better), both computed over the same 105 images from the HDR
Survey dataset [7]. In (*) these scores were taken directly from
the respective paper. The scores in (**) were computed over 304
images from the HDRI Haven dataset [54], which were used to
evaluate [55], and in (***) over the 456 images which were used
for the evaluation in [32].

the competitors’ original code was not available, we used
their test images to evaluate our method using these scores.

The Fréchet Inception distance (FID) [16] is a bench-
mark score for measuring the distance between distribu-
tions of visual descriptors extracted from the Inception net-
work [46]. We use this distance to measure the resem-
blance of our tone-mapped images and native LDR images.
This distance, however, requires a large number of images
(≥ 10, 000) which are currently not available in the domain
of HDR imaging. Instead, we use a variant of this distance,
which we call pixFID, and can be reliably evaluated using
less images. In this test we collected 1000 image from the
HDR+ dataset [15], and another 1000 test LDR images from
the DIV2k dataset [1]. At the Appendix at the Supplemental
Material we describe this distance and show its consistency
with the FID.

Tone-Mapped Image Quality Indices. Our network is
trained to reproduce the visual appearance of native LDR
images while preserving the structural content of the input.
Both the TMQI and BTMQI reward for these qualities and
indeed, as Table 1 reports, our method achieves the best
scores, with a non-negligible margin in the TMQI, next to
a list of top-scoring tone-mapping algorithms and the re-
cent DNN-based approaches of Zhang et al. [55], Rana et
al. [38], Panetta et al. [32] and Cao et al. [3]. Note that
the latter DNN-based methods are not the next top scor-
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Figure 5. Tone-mapped images produced by different methods.

ing TMOs in the list. Hence, beyond pushing the state-of-
the-art in HDR tone-mapping, our approach does so using
DNNs which, as we note below, are available in a more ef-
ficient platform.

Fréchet Inception Distance. Table 2 reports the pixFID
values obtained by the different methods where our network
receives the lowest (best) value. This suggests our tone-
mapped images bear the closest statistical resemblance to
native LDR images. Note that the recent algorithm of Liang
et al. is our closest competitor in this score. This score was
not evaluated over the DNN-based methods due to the un-
availability of their code.

4.2. Visual Evaluation

Figure 5 provides a side-by-side comparison of tone-
mapped images produced by the methods achieving the top
scores in the tests above.

The method of Shibata et al. appears to produce a proper
compression level but also over-emphasized fine details and
thin halos. The results of Liang et al.’s method show
less edge-related artifacts and an adequate compression, but
contain a fairly modest amount of local and global contrasts.
The method of Rana et al. produces halo-free images which
are rich in contrast, but also contain overly dark regions due
to an insufficient amount of compression. Both the algo-
rithms of Farbman et al. and Paris et al. produce artifacts-
free images, but seem to apply an insufficient level of com-
pression that leads to weaker contrasts. Zhang et al.’s re-
sults are better compressed and contain improved contrasts.
Finally, the method of Gu et al. achieves a fair level of
compression but suffers from over-emphasized fine details
and minor halo effects. The tone-mapped images produced
by our method do not seem to suffer from visual artifacts,
and have an adequate amount of compression with no over-



TMO pixFID
Shan et al. [42] 1.22
Shibata et al. [44] 1.20
Ferradans et al. [10] 1.165
Mai et al. [27] 1.141
Paris et al. [33] 1.107
Gu et al. [12] 1.105
Farbman et al. [8] 1.102
Liang et al. [25] 1.04
Ours 1.008

Table 2. Pixel Fréchet Inception Distance (lower is better) com-
puted against native LDR images from the DIV2k dataset.

and under-exposed regions. The local and global contrasts
appear fairly balanced, and consistent with ones found in
contrast-rich native LDR images. Additional side-by-side
comparison images can be found in the Supplemental Ma-
terial of this paper.

User Study. Finally, in order to further assess the vi-
sual quality of our results, we conducted a user-study that
follows the protocol used in [25]. Specifically, it consists
of eight participants who were asked to rate between 1 to
8 images produced by the methods in [25, 33, 38, 12, 8] as
well as ours. The images were displayed next to each other
(at a random order). The participants were naive as to the
purpose of the test and were asked to score the images based
on how realistic and unprocessed thy appear.

Our method obtained the highest mean score 6.43 with
std 1.6, while the next top scoring method is [25] with mean
score of 5.78 with standard-deviation of 2.04, and then [33]
(4.39, 1.99), [8] (4.70, 1.98), [12] (2.43, 1.95) and [38]
(2.14, 1.28). A plot summarizing these results can be found
at the Supplemental Material.

4.3. Ablation Study

In order to demonstrate the contribution of different
components described in Section 3, we evaluated the TMQI
and FID scores obtained by switching them off. For refer-
ence, we remind that our method achieves pixFID of 1.008
and TMQI of 0.919.

Adaptive Compression Level. TMOs that use a TRC
determine the amount of compression in one of two ways:
(i) operate on the raw luminance values of the input im-
age, i.e., omitting the division by max(Y ) in Eq. 1, and al-
low their range to affect the compression [9, 6, 8], or (ii) as
in [21] the input luminance is normalized to a fixed range,
i.e., using a fixed amount of compression λ = 5000 in Eq. 1.

In order to successfully cope with images of different
dynamic range our method adapts the compression level it
applies. Moreover, it estimates this level from the input his-
togram and avoids inconsistencies in the luminance scales
of images curated from different sources. Using a fixed
λ = 1000 lowered the TMQI score considerably to 0.89,

and omitting the luminance normalization undermined both
the pixFID to 1.096 and TMQI to 0.75. We provide visual
demonstrations at the Supplemental Material.

Square-Root Transformations. As described above,
we augment our U-Net architecture with

√
x transforma-

tions to better span smooth tone-mapping operators. By
omitting these transformations the pixFID score increases
to 1.219 and the TMQI decreases to 0.869. The visual im-
pact of these transformations is substantial as we demon-
strate in the Supplemental Material.

Discriminator Ensemble. We also evaluated the impor-
tance of using an ensemble of shallow discriminator net-
works applied at multiple image resolutions to two alterna-
tives: (i) the use of a single shallow discriminator at the
finest image resolution, and (ii) the use of a single deeper
DCGAN architecture [37]. The first option results in in-
ferior scores of pixFID 1.096 and TMQI 0.912, as well
as a noticeable compromised ability to restore contrasts at
coarse scales of the images as shown in the Supplemental
Material. Figure 3 shows the artifacts resulting from the
instabilities involved in training a deep DCGAN discrimi-
nator network, despite the fact that this option did not have
a significant impact on the visual scores, namely, pixFID of
1.043 and TMQI of 0.92.

Adversarial Loss. Without the GAN loss, the network
is trained only to minimize the structural loss and results in
an identity mapping that outputs the input tone-mapped im-
ages unchanged, the TMQI and pixFID scores under these
settings were 0.8 and 1.131 correspondingly.

Structural Preservation. Finally, we report that the re-
moval of our structural-preservation loss did not allow our
training to converge.

5. Conclusions

We presented a new training approach that, unlike exit-
ing DNN-based methods, does not require paired training
examples by setting the goal of producing naturally look-
ing LDR renditions. In order to allow this minimal setting
to succeed, we presented a range-normalizing pre-process
which estimates and applies a different level of curve-based
compression, a loss that restricts the action of the network
to local changes in brightness and contrast, and a more con-
cise discriminator network, designed to promote the repro-
duction of low-level attributes native LDR posses. We eval-
uated our method on several image fidelity metrics and re-
ported its superior performance. A visual inspection shows
its ability to produce naturally-looking tone-mapping with
balanced levels of contrast.
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Durand. Learning photographic global tonal adjustment with
a database of input / output image pairs. In The Twenty-
Fourth IEEE Conference on Computer Vision and Pattern
Recognition, 2011. 3

[3] X. Cao, K. Lai, S.N. Yanushkevich, and M. R. Smith. Adver-
sarial and adaptive tone mapping operator for high dynamic
range images. In 2020 IEEE Symposium Series on Compu-
tational Intelligence (SSCI), pages 1814–1821, 2020. 2, 6

[4] Jeffrey DiCarlo and Brian Wandell. Rendering high dynamic
range images. Proceedings of SPIE - The International So-
ciety for Optical Engineering, 3965:392–401, 05 2000. 2

[5] Frédéric Drago, Karol Myszkowski, Thomas Annen, and
Norishige Chiba. Adaptive logarithmic mapping for display-
ing high contrast scenes. Comput. Graph. Forum, 22:419–
426, 2003. 1, 2, 4
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